Regulatory-Driven Innovation

Siltech Corporation Tom Cheung Robert Ruckle Steve Wilkowski Dave Wilson

Siltech Corporation

- Regulations are common drivers for innovation
- Examples related to silicone technology presented today

Silicon

The Journey from Silicon to Silicone

Properties of Silicones

Reality of Public Policy and Regulation

- Today instant, fragmented communication and desire to lessen negative impact on the environment and society drive regulatory and market changes.
- Perception is the new reality.
 - Chemicals are often guilty until proven innocent
 - Market perception often more important than regulations. And it nearly always precedes regulatory mandate.
- Manufacturers often scramble to stay ahead of the current hot topics with innovation and new product development.

Regulatory Drivers in the Silicone Field

- 1. Solvents and Volatiles
- 2. Fluorine
- 3. Emulsifiers
- 4. The "Green" Trend

1. Solvents and Volatiles

- Reduce Organic Volatiles and Solvents
- Reduce Volatile Siloxanes and Silicone Solvents

ST (mN/m)

Gloss (°)

🖬 Flow (mm)

Volatile Cyclic Siloxanes

- Silicones are non-HAPs
- Extensive toxicological and environmental testing has been completed
- Some early results led to concern over volatile silicones D₄/D₅
 - Personal Care Industry
 - Canada and Norway

Volatile Cyclic Siloxanes

2. Fluorine – Ambiguity for sure...

What are the concerns related to PFOA?

PFOA is very persistent in the environment and has been found at very low levels both in the environment and in the blood of the general U.S. population. Studies indicate that PFOA can cause developmental and other adverse effects in laboratory animals. PFOA also appears to remain in the human body for a long time. All of these factors....

What are fluoropolymers and telomers and how are they used?

<u>Fluoropolymers</u> impart valuable properties, including fire resistance and oil, stain, grease, and water repellency. They are used to provide non-stick surfaces on cookware and waterproof, breathable membranes for clothing. They are employed in hundreds of other uses in almost all industry segments, including the aerospace, automotive, building/construction, chemical processing, electrical and electronics, semiconductor, and textile industries.

(Source: http://epa.gov/oppt/pfoa/pubs/faq.html#concerns)

Fluoropolymers

PFOA - perfluorooctanoic acid

PFOS - perfluorooctanesulfonic acid

Strategies for managing concerns and regulatory change

- Reduce length of fluorine chain
- Substitute fluorocarbons with fluorosilicones

Challenges from Staining, Fouling, Graffiti, Fingerprints, Chemicals....

Comparison of Selected Properties of Silicone and Fluoropolymers

Silicone

- ✓ Low surface energy
- ✓ Very good thermal flexibility
- \checkmark Good chemical resistance
- ✓ Marginal oil resistance-swelling
- ✓ Very good water resistance
- ✓ Marginal abrasion resistance
- ✓ High cost
- ✓ Effective at low use levels

Fluoropolymer

- ✓ Very low surface energy
- ✓ Marginal thermal flexibility
- ✓ Very good chemical resistance
- ✓ Very good oil resistance
- ✓ Good water resistance
- ✓ Low abrasion resistance
- ✓ Very high cost
- ✓ Effective at low use levels

Fluoroalkyl Silicone Variants

- Silicone provides slip, surface tension reduction, mar resistance, hydrophobicity.
- Fluoroalkyl provides oleophobicity, stain and chemical resistance
- Organic provides miscibility

By varying the number, length and type of fluoroalkyl and/or organic substituents covalently bound to the silicone we can control properties.

Substitution of Fluorocarbons

3. Emulsifiers (APEO- and EO-free surfactants)

- Most pressure is on Nonyl
- Lipophilic and Hydrophilic Balance
- Good emulsifying and dispersing properties
- Low toxicity but degradation products are cited
- Greenpeace DETOX
 - Can we have APEO- and EO-free too?

Silicone Quaternary materials

$$\begin{array}{c} \mathsf{OH} & (\mathsf{CH}_2)_{17}\mathsf{CH}_3 \\ \mathsf{I} & \mathsf{I} & \mathsf{I} \\ \mathsf{O} = \mathsf{CH}_2 = \mathsf{CH} = \mathsf{CH}_2 = \mathsf{N}^+ = \mathsf{CH}_2\mathsf{CH}_3(\mathsf{CI}^-) \\ \mathsf{I} & \mathsf{CH}_2 & \mathsf{CH}_3 \\ \mathsf{I} & \mathsf{CH}_3 & \mathsf{CH}_3 & \mathsf{CH}_3 & \mathsf{CH}_2 \\ \mathsf{CH}_3 = \overset{\mathsf{I}}{\operatorname{Si}} = \mathsf{O} (= \overset{\mathsf{I}}{\operatorname{Si}} = \mathsf{O}) \overset{\mathsf{I}}{=} (\overset{\mathsf{I}}{\operatorname{Si}} = \mathsf{O})$$

19

Versatility in structure

20

Excellent EO Free O/W Emulsifier primarily used for PC, for now...

					Applications				Secondary Benefits						
Silicone	quat example	6 Emulsion Type	HLB Viscositv	Shear needed	Processing Temperature	Make Up	Sun Care	Skin Care	Hair Care	Hydroalcoholic Emulsion	Ease of application	water resistance	Lubricity and Release	Pigment dispersion	Sensory Claims
	J2-2B	o/w	11 700	р н	Н	Y			Υ	Y					rich non-greasy
	J2-4B	o/w	9 750	ЭΗ	Н	Y	Υ	Y	Υ	Y					luvurious very soft
	J2-6B	O/W	7 750	ЭΗ	Н	Y	Υ	Y	Υ	Y					smooth nowdery feel
	J2-8B	O/W	5 670	ЭΗ	Н	Y	Υ	Y	Υ	Y		Y	Υ	Y	smooth powdery leel

4. The Green Trend

- "Green" has come to mean non-petroleum, preferably naturally derived materials.
- Silicone is synthetic, but is derived from silica the main component of the earth's crust.
- There is a market need for more natural products.
- A variety of products based on castor oils, peanut, sunflower and essential oils can be made.

Castor Oil Silicones

23

Castor Oil Silicones

1.74% additive in SB/PU	Gloss	Static COF	Kinetic COF	Marker Resist.	Mar Resist.	Coating Appearance
<u>Silicone Copolymer type</u>						
Silicone Acrylate	92.2	0.405	0.384	7.500	7.5	Mild waves
Silicone Carbonate	97.2	0.680	0.745	7.000	7.6	Mild waves
Silicone Castor Oil	96.3	1.019	0.945	9.000	8.2	Smooth

Natural oils and coatings can be "siliconized"

Conclusion

- Sound science *should* drive regulatory change, but....
- Regulations can foster innovation and result in better and safer chemicals
- Collaboration, creativity and agility are vital

QUESTIONS?

